Generalized Averages for Solutions of Nonlinear Operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized averages for solutions of two-point Dirichlet problems

For very general two-point boundary value problems we show that any positive solution satisfies a certain integral relation. As a consequence we obtain some new uniqueness and multiplicity results.

متن کامل

Generalized Continuous Frames for Operators

In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ wi...

متن کامل

Solutions of Nonlinear PDES in the Sense of Averages

We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all p′s. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 < p <∞. Résumé On charactérise les fonctions p-harmoniques, y compris les cas ...

متن کامل

On Fundamental Solutions of Generalized Schrödinger Operators

We consider the generalized Schrr odinger operator ? + where is a nonnegative Radon measure in R n , n 3. Assuming that satisses certain scale-invariant Kato condition and doubling condition, we establish the following bounds for the fundamental solution of ? + in R n : where d(x; y;) is the distance function for the modiied Agmon metric m(x;)dx 2 associated with. We also study the boundedness ...

متن کامل

Probabilistic Averages of Jacobi Operators

I study the Lyapunov exponent and the integrated density of states for general Jacobi operators. The main result is that questions about these can be reduced to questions about ergodic Jacobi operators. I use this to show that for finite gap Jacobi operators, regularity implies that they are in the Cesàro–Nevai class, proving a conjecture of Barry Simon. Furthermore, I use this to study Jacobi ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2000

ISSN: 0022-247X

DOI: 10.1006/jmaa.2000.7077